... | ... | @@ -133,7 +133,7 @@ Where \(n\) is the number of observations. |
|
|
Nagelkerke’s pseudo-R² is a modification of Cox & Snell’s pseudo-R² that adjusts for the fact that Cox & Snell’s pseudo-R² cannot reach a maximum value of 1. The formula is:
|
|
|
|
|
|
$$
|
|
|
R^2_{\text{Nagelkerke}} = \frac{R^2_{\text{Cox-Snell}}}{1 - \left( L_{\text{null model}} \right)^{2/n}}
|
|
|
R^2_{\text{Nagelkerke}} = \frac{R^2_{\text{Cox-Snell}}}{1 - \left( L_{\text{null\ model}} \right)^{2/n}}
|
|
|
$$
|
|
|
|
|
|
Each pseudo-R² provides an indication of the model fit, with values closer to 1 indicating a better fit. However, unlike traditional R², pseudo-R² values can vary depending on the model and should be interpreted with caution.
|
... | ... | |